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ABSTRACT 
 
The accurate detection and characterization of 
nonlinearities associated with damage in structural 
systems is an area of vibration analysis that is being widely 
researched.  In this paper, nonlinear behavior is 
considered a potential indicator of damage.  Most 
conventional damage detection methods, such as those 
based on resonant frequencies and mode shapes, do not 
accurately identify the location and extent of nonlinearities 
present in a given structural system.  As an extension of 
previous work at LANL, an effort is made to validate a 
damage detection method proposed by Adams [1].  This 
method states that the frequency response function (FRF) 
matrix obtained from a low-level vibration test 
approximates the underlying linear FRF matrix of the 
system.  The nonlinear systems’ responses to high level 
excitation are combined with the linear FRF in a classic 
feedback loop to obtain the contributions of nonlinear 
internal forces.  The temporal and spatial characteristics of 
the nonlinearities present in a structural system are 
identified.  An 8-DOF system is used as a test case to 
validate the aforementioned method.  Results of the tests 
and important issues concerning the method are 
presented.  
 
NOMENCLATURE 
 
The following are adapted from [1]: 
 
{X(? )}No x 1 Linear Fourier spectrum of the output vector 

of a nonlinear system 
No Number of outputs 
{F(? )}No x 1 Fourier spectrum of the input vector 
[I]  The identity matrix 
[HL(? )]No x No Frequency response function matrix of a 

linear system 

Xni(? ) Scalar nonlinear function of the outputs for 
nonlinear element i 

XNL(? ) Fourier spectrum of the outputs from the 
nonlinear system 

[BL(? )]No x No Impedance matrix of a linear or linearized 
system 

[xBni(? )]No x No Frequency response (projection) matrix 
between the outputs and Xni(? ) associated 
with the nonlinear element i  

[fBni(? )]No x No Frequency response (projection) matrix 
between the external inputs and Xni(? ) 
associated with the nonlinear element i  

{Bni(? )}No x No Vector of impedance with nonlinear 
coefficient and nonlinear spectral function 
factored out to yield entries of 1 and –1 only; 
associated with nonlinear element i 

? i(? ) Scalar nonlinear parameter for nonlinear 
element i 

[BN(? )]No x No ? i(? ){Bni(? )}No x No 
DOF Degree-of-freedom 
FRF Frequency response function 
[xHM(? )]No x No Nonlinear modulation matrix on the outputs 
[xH(? )]No x No Frequency response function matrix using the 

projection onto the outputs 
 
1. INTRODUCTION 
 
The ability to identify and characterize damage (nonlinear 
elements) in a structural system is of great importance in 
the aerospace, civil engineering, and mechanical 
engineering industries.  Over the past two decades, this 
area of vibration-based research has concentrated on 
damage detection methods for various structures 
including, but not limited to cracks in beams, plates, scaled 
models of multi -story buildings, and frames [2].  The goal is 
the detection, identification and repair of damage present 
in a structural system before failure occurs. 



 
Most current damage detection methods define damage to 
be changes in the dynamic response of the system that 
alter the mass, stiffness, or energy dissipation of the 
structure.  The majority of the methods to date are based 
on changes in resonant frequencies and mode shapes.  A 
few methods also use neural networks, changes in 
flexibility, and statistical models, but these are not as well 
researched as those based on shifts in frequency and 
changes in mode shapes.   
 
There are several problems associated with the use of 
frequency-based damage detection methods.  In order to 
use most frequency-based methods, the dynamic 
characteristics of the structure must be known prior to 
damage.  In other words, data must be available for the 
initial, undamaged state of the system.  This is a problem 
for older structures that were not instrumented during 
construction.  In addition to requiring data from both the 
undamaged and damaged system, a large number of 
frequency methods also assume that the damaged area of 
a structure is known a priori [2].  Therefore, unless these 
frequency-based methods are being implemented to 
identify damage that is already known, then a majority of 
the methods available become useless when the location 
of damage is one of the unknowns.  
 
If both the location of the damage and the data from the 
undamaged system are available, there are still problems 
with frequency-based methods.  The difficulty then 
becomes being able to excite the structure in a frequency 
range that will excite the damage.  Typically, damage is a 
local phenomenon which implies that the lower-frequency 
global response (which is most often measured) is less 
influenced by any damage present in a system.  In order to 
detect damage, structures need to be excited in a much 
higher frequency range.  In a laboratory setting, this might 
not be a problem, but for large-scale tests it is difficult to 
excite a structure in the necessary range due to the 
amount of energy required to produce a good response [2]. 
 
Data compression is another drawback of not only 
frequency and modal-based testing, but also any vibration-
based test that implements post-processing of data 
acquired.  Data are commonly windowed and averaged to 
avoid leakage and obtain a clearer visualization of the 
dynamic response of the system in the frequency domain.  
Although this may provide cleaner modal data, a lot of 
information about the structure is potentially lost through 
the data reduction process.  But without the use of data 
reduction, the data will most likely be too complex to 
accurately analyze.  Therefore, most researchers take opt 
to use data compression methods and rely mostly on the 
modal properties obtained to identify damage present in 
structural systems [2,3].  Data compression is essential, 
but it is critical to implement compression algorithms that 
retain damage sensitive features of the data. 
 
Finally, a problem that is prevalent in all types of vibration-
based damage detection methods is the fact that very few 
have been implemented on full-scale in-situ structures.  
Most available methods have been implemented in a 
laboratory setting on scaled models such as beams and 
plates.  The major reason this problem exists is due to the 
lack of full-scale structures that are available for 
destructive testing [4].   

 
The damage detection method implemented in this  paper 
(and presented in [1]) is based upon frequency data, but 
does not contain the majority of the aforementioned 
“problems” with frequency-based vibration tests.  
Specifically, Adams’ method does not depend on; changes 
in resonant frequencies or mode shape, the undamaged 
state of the system, or prior knowledge of the damage 
location(s). 
 
In the following sections, Adams’ method will be presented 
and then applied to an 8-dof mass-spring system.  
Examples of results and issues concerning the 
implementation of the method in question will also be 
discussed. 
 
 
2. ADAMS’ THEORY 
 
2.1 Overview of Adam’s Method 
 
Adams presents a new method for detection, classification, 
and location of nonlinear elements in a given system [5].  
His focus is on a derivation of the frequency response 
function [1], and on a superposition principle for nonlinear 
systems [5].  
 
The input data, output data, and the number of degrees-of-
freedom make up an experimental system description.  The 
key to Adams’ method is that it views the nonlinearity as an 
internal force, which acts together with external forces on 
the underlying linear system [1].  Known effects of the 
linear FRF are removed from the nonlinear behavior, 
isolating the nonlinear force. 
 
In real systems one typically has fewer inputs than outputs.  
Normally, the lumped parameter model of the system would 
look like 
 

11 )}({)]([)}({ NixNoxNiLNox FHX ??? ?                                   (1) 

 
where No is the number of outputs and Ni is the number of 
inputs.  To allow nonlinear forces at each response 
locations, the lumped parameter model equations are 
written as 
 

11 )}({)]([)}({ NoxNoxNoLNox FHX ??? ?                                (2) 
 
By keeping track of the outputs, Adams’ method treats the 
nonlinearities as hidden inputs.  These inputs are 
unmeasured, internal, feedback forces that are nonlinear 
functions of the output [1].  Use of multiple inputs and 
multiple outputs (MIMO) also aids in tracking these 
nonlinearities. 
 
2.2 Using the Feedback Loop and the MIMO system 
 
The model in equations (1), (2) is inappropriate for 
nonlinear systems.  The linear and nonlinear dynamics 
combine creating an FRF matrix of the nonlinear system 
that is different from the FRF matrix of the linear system [1].  
This prompted Adams to view the nonlinearity as a lumped 
element.  In the frequency domain, the total system model 
is: 
 



1NoxNL1Nox1n11NoxNoxNoL
FXBXB )}({)(}){()}({)}({ ?????? ??               (3) 

 
In this impedance model, [BL(? )] is the linear impedance.  
The nonlinear portions are found in the vector 
? 1(? ){Bn1}XNL(? ).  Xn(? ) is the scalar that determines the 
class of the nonlinearity.  {Bn1} has three possible values, 0, 
-1, 1, which determine the location of the nonlinearity.  The 
final term, ? 1(? ), quantifies the strength of the feedback 
force.  The vector ? 1(? ){Bn1}XNL(? ) describes one 
nonlinearity.  A generalization of this sums many such 
nonlinear vectors.   
 
The FRF matrices of the linear system couple the nonlinear 
and linear mechanics.  Use of the impedance relationship 
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avoids much of this coupling.  The internal feedback forces 
are functions of the outputs [1].  In equation (4) below, Nn 

nonlinearities are allowed. 
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Reviewing (4): 
 

.)(}){()}({)}({)}({
1

111 ?
?

??
nN

i
n iNoxn iiNoxNoxNoxNoL XBFXB ??????           (5) 

Adams notes that if you ignore the nonlinear terms in (5), 
the equation becomes linear [1].  In a real system assumed 
to be linear, the nonlinear terms just contribute noise or 
other errors that are ignored.   
 
At every frequency {Bni}Nox1Xni(? ) is a linear combination of 
the response vector components of {X(? )}.  This gives the 
MIMO, spectral, total least-squares set of equations: 
 

11 )}({)]([)()}({ NoxNoxNonixniNoxni XBXB ???? ?                             (6) 
 
Equation (6) describes the nonlinear behavior as a function 
of measured responses.  As Adams notes, the nonlinear 
behavior can also be described as a function of the 
measured external forces. 
 

11 )}({)]([)()}({ NoxNoxNonifniNoxni FBXB ???? ?                             (7) 

 
Equation (7) eliminates the unmeasured internal forces in 
favor of the measured external forces [1].   
 
By combining equations (4) and (6) 
 

.)}({)}({)]([)}({)}({ 111 NoxNoxNoxNonNoxNoxNoL FXBXB ????? ??         (8) 
 
The entire summation is replaced with a single impedance 
matrix, [Bn(? )].  In figure (1) it is easy to see the feedback 
nature of this equation. 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

2.3 Locating the Damage 
 
If the system is purely linear, the loop is unnecessary.   
When considering a nonlinear system with damage 
present, the closed loop model with feedback of the internal 
forces is applicable.   
 
In [1], Adams defines three equations  
 

1xN
1

nxNNLxNN1xN oooooo
FBHIX )}({)]]([)]([][[)}({ ???? ???

(9) 
 

)}({)]()][([)}({ ???? FHHX NoxNoLMx?                   (10) 

 
)}()]{([)}({ ??? FHX x?                                                (11) 

 
Using these equations, it is possible to calculate, locate, 
and describe a nonlinearity present in a system. 
 
The matrix [xH(? )] is the modulation matrix that determines 
the strength and location of the nonlinearity.  As the system 
becomes more linear this matrix approaches the identity 
matrix [5].  This is used to determine the strength of the 
nonlinearity.   
 
The rows of the modulation matrix determine the location of 
the nonlinearity.  Each row corresponds to one of the 
degrees-of-freedom, so if two rows have significant values 
present in them, then the nonlinearity is located between 
those degrees-of-freedom [5].   
 
 
3. APPLICATION TO AN 8-DOF SYSTEM 
 
3.1  Description of 8-DOF System 
 
In an attempt to validate Adams’ method, an experiment 
was performed on an 8-dof system that consisted of eight 
masses and seven springs connected in series.  Uniaxial 
accelerometers were attached to each of the eight masses.  
A force transducer located at the base of the configuration 
recorded the force input to the system (See Figure 2).  In 
order to mount the mass-spring system vertically, it was 
threaded through a stainless steel bar which was attached 
to a steel frame (See Figure 2).  The stainless steel bar 
introduced coulomb friction into the system.  The mass-
spring system would tend to “stick and then slip” along the 
bar.  To minimize this affect, the stainless steel bar was 
lubricated with Tri-Flo, a common commercial lubricant, 
before the masses and springs were installed for each test.   
 

[HL(? )] 

[BN(? )] 
 

{F(? )} {X(? )} 

Figure 1:  Closed loop representation of equation (8) 



 
Figure 2:  8-DOF Experiment Setup 

 
 
A more detailed diagram of the mass-spring system is 
shown in Figure 3 and the nominal values of the eight 
masses and seven springs are listed in Table 1.     
 
 
 
Nominal Values of Masses Spring Constants 
Unit M1 M2-M8 Unit K1-K7 
kg 0.5593 0.4194 Kn/m 56.7 

Table 1: Values of Masses and Springs 

 
 
To introduce a nonlinearity into the 8-dof system, two 
bumpers consisting of tiny steel bars were attached to one 
of the masses.  Rather than having a metal-metal contact 
when the bumpers hit, “bumper contacts” were made out of 
a dense polymer that fit inside the head of a hex screw.  
This provided a better contact surface (See Figure 4). 
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Figure 3:  Detailed diagram of mass-spring system 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 Equipment Used 
 
The following equipment were used during the tests of the 
8-dof system.  Tables 2 and 3 contain the specifications of 
the sensors used. 
 

1. 40 channel HP3566A/67A data acquisition system 
a. 35653A 50 kHz input source 

Bumpers Bumper Contacts 

Figure 4:  View of Bumpers and Bumper Contacts 



b. 35651C signal processor 
2. TECHRON 5530 power amplifier 
3. Vibration Test Systems, VG 100-6 

electromagnetic shaker 
4. Endevco 2251-A ISOTRON® PE Accelerometers 
5. PCB 208A04 piezoelectric force transducer 
6. Matlab v. 5.3 R11.1 
7. IBM ThinkPad Pentium Laptop 

 
Accelerometer 

Position 
Serial 

Number 
Channel 
Number 

Sensitivity 
(mv/g) 

M1 DF39 2 9.873 
M2 DE60 3 10.06 
M3 DG78 4 9.561 
M4 DF53 5 9.696 
M5 DF10 6 9.851 
M6 DG77 7 9.605 
M7 DE94 8 10.04 
M8 DF43 9 9.439 

Table 2: Specifications for Endevco 2251A-10 ISOTRON® PE 
Accelerometers 
 
Force Transducer 

Serial Number 
Channel Number Sensitivity (lbf/V) 

2041 1 1.000 

Table 3: Specification for PCB 208A04 Piezoelectric 
Force Transducer 

 
3.3  Description of Experiment 
 
For all tests, a 10V random excitation was generated by the 
HP3566A, amplified by the TECHRON power amplifier, and 
input to the 8-dof system at the base of the structure (below 
mass 1).  Two separate tests were run to obtain both the 
linear and nonlinear dynamic responses of the system.  
The first test was run without any bumpers installed to 
capture the linear.  Then the bumpers were installed 
between two particular masses to obtain nonlinear data.  
Several separate tests were taken with the bumpers in 
different locations to provide a larger data set for analysis 
purposes.  For both the linear and nonlinear setups, the 
outputs of all accelerometers and the force transducer were 
recorded by the HP3566A and saved for post-processing.   
 
3.4 Data Acquisition and Processing 
 
Time domain data were acquired for 32-seconds, sampled 
at 1024 samples per second.  Data were then saved to disk 
and converted to universal file format for post-processing.  
Each time file consisted of eight acceleration time histories 
and one input force time history with 32768 samples per 
channel.   
 
The Signal Analysis Toolbox within Matlab was used to 
post-process [6] the time data.  The data were processed 
using traditional FFT analysis techniques using spectral 
windowing and overlap processing.  The FRFs and 
coherence functions were calculated with the tfe and 
cohere functions respectively with an fft size of 1024, 
sample rate of 1024, a hanning window, and a 50% 
overlap.    
 
Generally speaking, the use of the hanning window helps 
prevent leakage of data.  Specifically, the hanning window 

attenuates the input signal by bringing both ends of each 
block of data to zero.  This removed end-of-block 
discontinuities in the signal.  In Fourier series analysis, any 
discontinuities in the time domain signal are represented by 
a large number of low and high frequencies.  As a result, 
the output generated contains many high frequency 
components.  By using the hanning window, and thus 
removing the high frequency components in the input 
signal, the high frequency components in the output data 
were attenuated.  The removal of the extraneous side band 
frequencies that occur as a result of the discontinuities 
produced data that were more representative of the actual 
output data.   
 
3.5  Implementing Adams’ Method 
 
Equations (9) and (11) are the primary equations used in 
solving for the known nonlinearities in the 8-dof system.  
Equation (12) is formed by left multiplying the term that is 
inversed in equation (9): 
 

.)}({)]([)}()]{([)]([)}({ 1xNxNNL1xNnixNNL1xN ooooooo
FHXBHX ?????? ??

(12) 
 

Subtracting {X(? )}Nox1 from each side of the equation forms 
 

.}{)}({)]([)]([ 11 NoxNoxNoxNonNoxNoL XBH ?????                  (13) 
 
Here, {? }, is the difference between the computed Fourier 
spectrum of the outputs and the measured Fourier 
spectrum of the outputs.  Computed outputs are based on 
the underlying linear FRF of the nonlinear system.  The 
difference between the measured and computed responses 
represents the contribution of nonlinear internal forces.   
 
Since {X(? )}Nox1  and {HL(? )}NoxNo{F(? )}Nox1 are known, {? } 
can be obtained.  By taking successive blocks of data and 
using a linear regression technique, the product  
[HL(? )]NoxNo[Bn(? )]NoxNo is estimated.   
 
Alternatively, equation (11) can be solved for the estimate 
of the nonlinear frequency response function matrix 
projected onto the outputs, [xH(? )].  This produces the 
same results as those given by solving for 
[HL(? )]NoxNo[Bn(? )]NoxNo in equation (12). 
 
The 8-dof system was excited by a single input at the base 
of the stainless steel bar beneath mass 1 (See Figure 2).  
Equations (10) and (12) require that the FRF matrix due to 
the underlying linear system, [HL(? )]NoxNo, be NoxNo.  This 
requires an input at each of the degrees of freedom.  With 
a single input, the FRF matrix of the underlying linear 
system is Nox1.  In [5], Adams’ method is applied to a 
system with a single input and multiple outputs.  There 
might be slight errors in the results due to numerical 
instability of the inverse in equation (9), but the 
nonlinearities present can still be identified.   
 
3.6 Results of Experiment 
 
As described in Section 3.5, both the product 
[HL(? )]NoxNo[Bn(? )]NoxNo, and the matrix [xH(? )], were 
calculated from the 8-dof experimental data.  Sample plots 
of these two matrices for damage between masses 3 and 4 



are shown below (See Figures 5 and 6).  Each plot shows 
the two matrices as functions of position and frequency.   
 

 
Figure 5: [HL(? )]NoxNo[Bn(? )]NoxNo Matrix Showing 
Nonlinearity Present Between Masses 3 & 4 

 
The largest magnitude occurs between positions 3 and 4 in 
both figures.  The peak magnitudes in these plots indicate 
how much [HL(? )]NoxNo[Bn(? )]NoxNo and [xH(? )] , 
respectively, differ from the identity matrix.  The peak 
magnitude between positions 3 and 4 corresponds to a 
nonlinearity present between masses 3 and 4.   
 
Some of the results detect the known nonlinearity present 
for a given location, but not all scenarios tested were 
accurately identified by either method discussed in the 
previous section.  For example, Figure 5, shows the 
accurate identification (using equation (12)) of a 
nonlinearity present between masses 3 and 4.  The same 
method, applied when the induced nonlinearity was 
between masses 2 and 3 does not show a peak between 
locations 2 and 3 (See Figure 7).  The same is true when 
solving for [xH(? )].  Figure 8 shows the plot of [xH(? )] for a 
nonlinearity located between masses 4 and 5.  This clearly 
indicates that the results from the 8-dof experiments are 
inconclusive. 
 
Due to the results discussed above and shown in the 
previous figures, it is concluded that the methods 
presented in [1] and [5] do not consistently identify 
nonlinearities in the 8-dof system tested.   
 
There are several reasons why the application of Adams’ 
method produced inconclusive results for the 8-dof system 
discussed in this paper.   
 

1. The 8-dof system, without the bumpers installed, 
was not linear.  The stainless steel bar that kept 
the mass-spring system vertical, introduced a 
nonlinearity (in the form of friction) into the system.  
The underlying linear FRF that was measured, 
[HL(? )], was therefore not an accurate 
measurement.  This was actually a measurement 
of a nonlinear system.  The nonlinearity had an 
unpredictable effect on calculations of equations 

(9) and (11).  Theses calculations were therefore 
based on the FRF of a nonlinear system. 

 

 
Figure 6:  [xH(? )] Matrix Showing Nonlinearity Present 
Between Masses 3 & 4 

 
Figure 7:  [HL(? )]NoxNo[Bn(? )]NoxNo Matrix Showing NO 
Peak Present Between Positions 2 & 3 

 
2. The system was only excited with a single input 

instead of an input at each degree-of-freedom.  
Though a nonlinearity present in a system that is 
excited with a single input may be identified 
successfully, multiple inputs into the 8-dof system 
provide the necessary information to fully 
characterize a nonlinearity present at any location.  

3. Adams’ method relies on inverting the FRF 
[HL(? )]NoxNo with only partial knowledge of 
[HL(? )]NoxNo.  This inversion cannot be completely 
with a single input.  The solution to this problem is 
to drive the system with multiple inputs.  This 
drastically reduces the errors that are formed 
when the inverse is calculated in equation (9). 

 



 

Figure 8:  [xH(? )] Matrix Showing NO Nonlinearity 
Present Between Masses 4 & 5 

 
Given existing time constraints, the 8-dof system could not 
be modified to have an input at each degree of freedom.  
We therefore suggest that this method be tested again after 
the system has been configured for multiple inputs and the 
friction due to the stainless steel bar be minimized or 
eliminated.  
 
 
4. SUMMARY AND IMPORTANT ISSUES 
 
An attempt was made to validate a method suggested by 
Adams in [1,5] to detect nonlinearities present in the 8-dof 
experimental example presented in this paper.  Application 
of the frequency-based detection method produced 
inconclusive results for the mass-spring system for most 
scenarios presented.  We conclude that this method of 
detection, based on a single input, is not reliable or 
repeatable for this experimental structural system. 
 
Some simple changes, such as providing multiple inputs 
into the system instead of a single input, should 
theoretically produce results that show the accurate 
detection of nonlinearities present at any location in the 
structural system.  This is due to the fact that the errors in 
the results due to numerical instability of the inverse 
[HL(? )]NoxNo in equation (9) would be reduced to a 
minimum.  In addition, if the inherent nonlinearity produced 
by the stainless steel bar that supports the system was 
reduced to a minimum, or removed altogether, the system 
would resemble a more linear system before the bumpers 
were installed.  This would change all of the results 
obtained and would most likely detect damage at all 
positions. 
 
Finally, validation on a large-scale structure is another 
issue that needs to be addressed before Adams’ method 
can be truly classified as a reliable damage locator.  Most 
damage detection methods seek to locate and repair any 
damage present in a structural system before failure 
occurs.  It is perfectly acceptable to perform small 

laboratory experiments to determine if the method 
succeeds for small-scale laboratory experiments, but 
before being classified as a reliable structural damage 
detection method, validation with several different large-
scale tests is required. 
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